Integrating Local Affine into Global Projective Images in the Joint Image Space
نویسندگان
چکیده
The fundamental matrix defines a nonlinear 3D variety in the joint image space of multiple projective (or “uncalibrated perspective”) images. We show that, in the case of two images, this variety is a 4D cone whose vertex is the joint epipole (namely the 4D point obtained by stacking the two epipoles in the two images). Affine (or “para-perspective”) projection approximates this nonlinear variety with a linear subspace, both in two views and in multiple views. We also show that the tangent to the projective joint image at any point on that image is obtained by using local affine projection approximations around the corresponding 3D point. We use these observations to develop a new approach for recovering multiview geometry by integrating multiple local affine joint images into the global projective joint image. Given multiple projective images, the tangents to the projective joint image are computed using local affine approximations for multiple image patches. The affine parameters from different patches are combined to obtain the epipolar geometry of pairs of projective images. We describe two algorithms for this purpose, including one that directly recovers the image epipoles without recovering the fundamental matrix as an intermediate step.
منابع مشابه
Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملThe Geometry of Projective Reconstruction I: Matching Constraints and the Joint Image
This paper studies the geometry of perspective projection into multiple images and the matching constraints that this induces between the images. The combined projections produce a 3D subspace of the space of combined image coordinates called the joint image. This is a complete projective replica of the 3D world defined entirely in terms of image coordinates, up to an arbitrary choice of certai...
متن کامل